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Atrtct-Thli paper Is dhe first In a two-pant sequence which ali= to always have associated reference directions so that the
\ state rioously the e~erEJ~basd concets which Are fuis'itina to instantaneous power into an n-port is

nonlinear network theory. posilvity and lonslessness. and to clarify dhe way
they enter the Input-outplat and die state-space versions of tie subject to V,(t )( I) =, VW,) i(l
this part we examine die conflicting definitions of passivity which exist he

the Ulteraturie and demonstrate the contradictions between dhem with
several example*. We propose a pardicular definition of passivity which Although a large number of slightly different definitions

r~i avoids these costraeflcdioe by eliinating the dependency on a state of of psityappear in the literature. three distinct ideas
-~"weo stored energy," andl we show thait It hde appropriate propertIesc pasiit

reinttondepedenice and closure. We apply it to several specific can be isolated if we overlook minor differences. Exam-
chme I o n-ports and derive eqoak pass'ivty criteria. Tbe exact ples below will show that two of them lead to odd or even

S condidions ame given under which this definition is equivalen to one tised nonphysical consequences if examined critically. The first
on an Internal energy function, and we w~e die concept of an Interaw concept considered below. Passivity 1. is taken from [31.
energy funiction to provide a canonical network realization for a class of 141.
pasive sy'stems UlO Passivity 1. An n-port is passive if. whenever the state x

1. INTRODUCIO at time zero is 0,

TI'HE PURPOSE of this paper is to clarify the meaningT t)it,.d >0(0
lof passivity and some of its consequences in nonfin- f vt.o)d:' II

ear circuit theory. A sequel [11 will deal with losslessness. fralamsil ar r ,i n l ~0
Due o sacelimtatonswe ave mited ll roos. hey According to this concept of passivity, we only need to

are given in complete detail in [2], where many topics in knwtezr-aerspseoan -otin rdro

this article are discussed more fully than is possible here. dermn iftisaiv orpsv.Th flown to
This work deals with finite dimensional time-invariant

systms escibe by tat eqatins. ur ie~int examples point out some disturbing consequences of this

throughout this paper will be that the state equations for coepofasity
an n-port are available at the outset. We will not be =Example 1. Consider a capacitor characterized by vt q)

concerned with the problem of constructing a state repre- =-I si i.1a.Istria eair d/io
sentation or describing an n-port as active or passive on VWt= (0) + i(T)k (-2
the basis of input-output measurements alone, although t 0  (

many of our results will have a bearing on the latter

problem. We require that inputs be applied and outputs cannot be distinguished from that of a I-F capacitor bY
observed over the time interval R~ ' -[1, oo), and "initial any possible voltage and current measurements.

state" means the state at t-0. Voltages and currents will In terms of Passivity 1, this element must be classified
as active, since (1-1) need not be satisfied when the initial
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1 VIn terms of Passivity I, Example 2 must be classified as
passive since (1-1) will be satisfied so long as v, =0. Butthis seems a strange classification for a system which can

supply unbounded energy if started in any nonzero initial
condition. In fact it is passive according to Passivity I
even if C<O, although it is unstable in that case. Thus
Passivity I is further called into question. (A related but
simpler example appears in 151.)

A second concept of passivity is taken from 161-f81.'
(a) Passivity 2. An n-port, storing no energy at t=O. is

EA passive if (I-I) holds for all T> 0 and all admissible pairs

// One difficulty with this definition is that it offers no
operational rule for determining the "stored energy" at
t=O. If we mean by the term "n-port" a hlack box which

"-- __ - -q we are not allowed to open, this is not a trivial objection.
Considering Example 2 again, it is unclear whether v, = 0
should be called a state of zero stored energy. If so. then
Example 2 is passive in the sense of Passivity 2. a classifi-
cation which throws considerable doubt on the ap-

(b) propriateness of Passivity 2.
Fig. I. (a) The capacitive constitutive relation v(q)-q-I. (b) The Even if we had such an operational rule, the demand

available energy for this system is given by E(q)-(q- 1)2/2. that we begin with a state of zero stored energy is itself
unclear. If for a given n-port we cannot find such a state.
is that n-port active or does it fall outside the scope of thedefinition altogether? The following example illustrates

+ 1z the problem.
a + Example 3. The nonlinear capacitor characterized by

C v(q)=e q has no state of zero voltage, as shown in Fig.
v, v2  3(a). For each initial state q it is possible to extract some

+ - energy from it. so no state of zero stored energy exists.
I' ,a , Example 3 cannot be clearly classified in terms of

Passivity 2 and thus emphasizes the inadequacy of Passiv-
ity 2 for a general theory of nonlinear networks. Example

. . .. ... - 3 is evidently active according to Passivity 1, another
questionable classification since Example 3 is not capable
of supplying unlimited energy like the classical unambigu-

[o ol ously active elements: ideal voltage and current sources
10, [a0 and negative linear resistors, capacitors, and inductors.

Fig. 2. Judging from its impedance matrix alone, this 2-port would The final definition considered below resolves these
appear to be passive. But in any nonzero initial state it can furnish anomalies. It was given a detailed analysis in [9]. And it isunlimited energy to the outside world. Furthermore, it is violently
unstable if C< 0. essentially the concept given earlier in 1101-113]. although

it has not been widely recognized that this definition does
not require the existence of a state of "zero stored energy."The impedance matrix is calculated by the usual formula A more complete and rigorous statement of it will be

to be given in Section 3.1.
Z(s)-ClsI-A}-1B+D- I 01. Passivity 3. Given an n-port SX, let the available energy

0[ 0 EA(x) be the maximum energy that can be extracted from
This completely expresses its zero-state response. If v.(0) IX when its initial state is x, with the convention that
= 0, then port I looks like a I-2 resistor and port 2 looks E,(x) - + 00 if the available energy is unbounded. Then
like a short circuit. But for any nonzero initial condition 9L is passive if EA(x) is finite for each initial state x.
voO #. the voltage at port 2 is v0,e -'/C regardless of the
input at either port. If v,.:9&0, then there is no limit to the 'The passivity definition from 161 was given in the context of an
amount of energy we can extract from this system simply arbitrary black box which need not have a state representation. It was

intended to apply to a larger clas of systems than is addressed in thisby connecting an arbitrarily small resistor across port 2. paper. A satisfactory general definition of passivity for an arbitrary
(We will show later that the peculiarities of this example black box, which reduces to the definition proposed in this paper for

n-ports described by state equations. remains an umolved problem to thearise because it is not completely controllable.) best of our knowledge.
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v (3) Yc R' is a nonempty set called the state space.
(4) E is a pair of equation

x=f(x.u) (2-1)
y=g(x. u) (2-2)

wheref(., •) maps xL× U R' and g(-, •) maps - L'- ".

Equation (2-1) is called the state equation and (2-2) is
-called the output equation.

(5) R is a pair of readout maps: V: X U--.R" is called
the port voltage readout map and I: 2" x LR" is called the
port current readout map.

(a) Definition 2. The power input function p: X UI--R is
defined by

, p(x,u)= V(x.M),I(x'u)

Definition 3. A choice of input and output variables m
and y for an n-port is called a hybrid pair if u and y are
n-dimensional and for each k E { . •n}, either u, =

EA ql - and yk =ik or else u, = i and Y, =t-,. where u, andy,
denote the kth components of u and y. respectively, and

0- v-, and i, denote the k th-port voltage and current, respec-
tively.

If u and y are a hybrid pair, then p(xu) V(xu).
(b) l(x, u)> = <U, g(x, u)> = u, y ' .

Fig. 3. (a) The constitutive relation v(q)-eq for a nonlinear capacitor. Definition 4. Let DcR P be an open set. A function h:

(b) The available energy for this element is given by EA(q)-eq. D--*R q is C' if it is continuous, and it is CA for some

positive integer k if each of its component functions
In other words, an n-port is active if for some initial possesses continuous partial derivatives of all orders up to

state it can furnish unlimited energy, and otherwise it is and including k.
passive. It is straightforward to calculate EA for Examples Definition 5. A function u(.): R - R" is said to he
I and 3 (a formal derivation is given in Section 3.1), and locally L P, I <p < + 0c. if u(-) is measurable and for everN
the result appears in Figs. (b) and 3(b). Since EA is finite choice of a, bE R+,
for each state q, Examples I and 3 are passive according f( 1 u(t )lIO)P it -- + 0C

to Passivity 3. For Example 2 we showed previously that
EA(vro)= + oo for all v, 0, and so Example 2 is active. where 1 is the Euclidean norm on R". We will let

W ith all the examples and objections that we are pre- LP (R '-R is the cl a of a n suc Wun io , lN
sently aware of, Passivity 3 appears to be the most rea- Cfunction u(-): R+---Rn is said to he h 'alh" I.' if u(. ) is,
sonable concept of passivity for a general theory of lumped
nonlinear n-ports because it does not single out any par- measurable and for every finite T> 0 there exists a finite

ticular state in 1 for special attention, and it does not MT > 0 such that 1ju(t)l f M7 for almost all t -10, 7). We

require that a state of zero stored energy be found, will let ,R+ " denote the class of all such fun-
tions.

II. DEFINITIONS AND AssuMpTIoNs Definition 6. Given a function a(-): R * -R" and a real

It is probably best to skim this section quickly the first number T >0. let u(.): R + -R" be obtained from ati b

time through and then refer back to it as needed. translating u() ir units to the left. i.e.. u,(t) u(t + r),

The n-ports dealt with in this paper are assumed to Vt E R +. We say that 1 t is translation Invariant if u( ) -

possess a state representation: this is our fundamental *u( ) et t VT> 0.

assumption. Roughly speaking, a state representation of Definition 7. Given two functions u1(. 1 R): R "

an n-port is a state equation and two readout maps which and given a real number >0. we define uir, and al,,:
give the port voltages and port currents as functions of the R + .. R" by
input and state, together with a set of rules defining the u ( 0 1 tt),f )

class of inputs which can be applied. , M2 (t ). (>T

Definition 1. A state representation S for an n-port is a
quintuplet {U,A0t, Y, E, R). where u,1 (t)

(I) UcRn is a nonempty set called the set of admissible ,(t) u2(t - r ) > Tr.

input values.
(2) Wt is a nonempty set of functions mapping R * to U 'new clases of functions are the same as the ettemandd 1.P wrte'

called the set of admissible input waveforms, defined by Desoer and Vidyasagar 1141 and denoted by I
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We say that ?I is closed under concatenation if for every It follows from standing assumption (4) that this quantity

u(,-), u,(-ItP'1 u.,() is an element of '?I for all r0 is always finite when t and 12 are finite.
and |i0,,() is an element of ")i for all r>0. Definition 9. Let {u(-),x(.)} be an input-trajectory

Given an input waveform u(.), we will say that a pair. lfy(t)=g(x(t),u(t)) for all t>O, then (u(.), y()) is
function x(.): R * --" is a solution of the state equation called an input-output pair. If v(t)= V(x(t), u(t)) and
x =fix.u) if x(-) is absolutely continuous on every i(t) l(x(t).u(t)) for all t0, then {v(.),i()) is called
bounded interval [0. T] with T>0 [15], and satisfies i(t) an admissible pair. If x(O)=x', then (u(-) y()- is called
=ftx(t). u(t)) for almost all t. an input-output pair with initial state x' and (v(-). i(. ) is
Standing ,Assumptions on State Representations called an admissible pair with initial state x'. We will adopt

the notation (v(.),i(.))II0, T1 for the restriction of

(1) The functionsf (.. V(., .), and !(.,.) are {t'(-)i(- to [0, T].
continuous. Finally, we shall often loosely use the term "system" to

(2) For every x0 E E and every u( .)Et there exists a denote an n-port .:k along with a given state represen-
unique solution x(.): R + 

E of the differential equation tation.
i-=f(x. u) such that x(0)=x 0.

(3) If S is a state representation for an n-port and if the Ill. THE PROPOSED DEFINITION OF PAsSIvITY AND
pair {u(), x()} is as described in (2), then the port SOME OF ITS CONSEQUENCES
voltage and port current of the n-port are, respectively, 3.1 Available Energy and Passivitv

v(t)= V(x(t).u(t)) and i(t)=l(x(t),u(t)).
(4) For every pair (u(.), x(-)) as described in (2), the The following definition formalizes the concept of

function t-p(x(t), u(t)) is locally L'. available energy introduced in Section I.

(5) The set of admissible input waveforms 1 t is transla- Definition 10. Given an n-port ,) with a state represen-
tion invariant and closed under concatenation, and all tation S, we define the available energy E,: E-
functions in "[ are measurable. R + { + oo) by

The second assumption implies that x(-) is defined and % T

continuous on R *, so systems with finite escape times are EA-x= sup f v(t).i(t)> dt (3-1)
x- 0

ruled out. Since x(-) must take values in E, we assume r>o
that no admissible input can drive the state out of the where the notation sup - indicates that the supremum is
date space. T, 0

taken over all T>0 and all admissible pairs (v(.),i(-)}
The fourth assumption implies that the input energy is with the fixed initial state x (Definition 9).

finite over any finite interval of time. Since we have assumed that t---v(t). i(t)> is locally L'
The assumption that " t is translation invariant is a (standing assumption (4), Section il), the integral in (3-1)

natural one for time-invariant systems, and closure under always exists and is finite, however, it is possible for
concatenation means roughly that any two input wave- EA(x) to be infinite for certain values of x. Roughly
forms which can be applied separately can be applied in speaking, the available energy at a particular state x is the

sequence. While we do not require that l be a vector maimum energy a t a ex t c ulr tae syte

space. all the L P and locally LP spaces of functions maximum energy that can be extracted from the system
when its initial state is x. Note that the above expressionmapingR *it)R' illsatsfyassmpton 5).Butthedefines EA(') exactly, not merely to within an additive

corresponding spaces of continuous and of differentiable def ine t eale no merelo wh an additconstant. Sine the value T=O is allowed as an upper limit
functions will not. of the integral in (3-1), EA(x) is the supremum of a set of

Assumptions (1) -(5) will seldom be mentioned again in numbers which includes zero. Therefore E
this paper. but they are essential to the formal proofs, negative function, as claimed in the definition.
which are given in 121. Nothe concept we have called Passivity I in

Definition 8. A state space trajectory is a function x: ethon et w he c alled asityIn

R -- which is a solution ofi=f(x.u) for some u(-)Et. Section 1 is equivalent to the condition EA(O) O.
If x(.) is a state space trajectory with x(t1 )=x and Example 4. A 2-terminal capacitor characterized by a

continuous function v=v(q) has the natural state repre-
xUt )=x- , t, ,tt. we will call the restriction of x(.) to sentation
It,. t z a trajectory from x, to x 2 . The restriction of x(.) to
(t,.t2J will be denoted by x(.)It, 1 t 2J. An input-trajectory q i

pair is a pair of functions u(.)E,[ and x: R --* - such r=v(q) (3-2)
that x() is a solution of xi=f(xu). If (u('),x(-)) is an
input-trajectory pair with x(O)-x', we call it an input- where X-U-R' and 91 is the class of all locally Li
tralectoy pair with initial state x'. If {u(-), x(-)} is an waveforms if.): R +-- R .

input-trajectory pair with x(ti)-x, and X( 2 )-X 2 . 11 <l It is well known that the energy extracted in driving a

we call Iu ). x( ))[ t,. t21 an input-trajectory pair from x, I-port capacitor from any initial state q, to any final state

to x2 . The energy consumed by u( ). x())lItI . t2 1 is the q2 depends only on the endpoints q, and q2 and is given
quantity byqu niyfp{x( t),w{t )) dt. b E( qo, q )- fq2t rq) dq- ( q ) dq .€, q (3-3) ,

f,-

I.1
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Therefore, when S is in the form of (3-2), Definition 10
reduces to

E.(q,)- sup {E(q,,q 2 )). (3-4)

q2 ER

Let's briefly reconsider the constitutive relations in Figs.
I and 3. For the constitutive relation in Fig. ](a) we have
E(ql,q 2 )=(q - 1)2/2-(q2 - 1)2/2. Taking the supre-
mum over q2 we have EA(qt)=(q, - 1)/2 or EA(q)=( q -
1)2/2, as drawn in dotted lines in Fig. I(b). Clearly an
energy-optimal control exists. It just drives q to the point
q- i. For the constitutive relation in Fig. 3(a), we have
E(q 1 , q2)-=e a -e1. Taking the supremum over q2 we Fig. 4. The nonligear capacitor with constitutive relatin trq , l

have E (qt)=e q,, or E,(q)=e q , as shown in Fig. 3(b). q2)e / /'. Note that E,(q) is never exc!l, icr,'

The way to extract the maximum energy from this last
element is to drive the charge as far negative as possible. ergy. For this reason, we will define in Section 3.3 a

While there is no trajectory which succeeds in reaching narrower concept of passivity called strongpamt tv which
q= - 0o in finite time and extracting all the energy possi- is closer to engineering intuition.
ble, the supremum in (3-1) includes admissible pairs and
values of T for which the extracted energy approaches the 3.2 Controllable Sy'stemns
value e q. In fact Definition 10 was stated in terms of a Passivity requires that E4 (x) < + x for each xe _ . Sup-
supremum in order to handle precisely this type of situa- pose we know that EA(x o ) < + x for a particular x, e -.
tion-one in which no finite-time energy-optimal control When can we conclude that E4 (xl < + oc for all xE C?
exists. The following theorem and its corollaries answer this

Definition 11. An n-port 1 with a state representation question, but first we must define reachability and corn-
S is passive if for each xE , EA(x)< + oo. Otherwise 9Z is plete controllability.
active. Definition 12. Given a state representation S. let

Definition I I is just a formal restatement of Passivity 3 x 0, x, E 1. The state x, is said to be reachable from x,, if
from Section 1. If for some initial state x0 there is no there exists a finite T>0 and an input/trajector. pair
upper bound on the amount of energy which can be (u(.), x(.)})I0, T] from x0 to x, (Definition 8). The staw
extracted, then EA(x0)= + oc and so 1.X is active; but if no space X is said to be reachable from x0 if every x C is
such state exists, then ck is passive. Observe that passivity reachable from x0 .
requires only that EA(x) be finite for each xE Z, and we Because of our standing assumption that t-- v( t ). i( t)
do not consider infinity or any point with one or more is locally L' , it follows that the transfer from x, to x, can
coordinates equal to t_0o to be an element of . In always be effected with a finite (positi'.e or negatixe)particular, passivity does not require that EA(.) be a amount of energy.

bounded function on X (cf. Figs. I(b) and 3(b)). Definition 13. A state representation S is said to he
The nonlinear capacitor in Fig. 3 violates intuitive no- completely controllable if 1 is reachable from x for e'erv

tions of passivity because it has no state where EA(q) = 0; x E 1.
nevertheless, it is passive by Definition !1. The capacitor Theorem I. Given an n-port X with a completely con-
in Fig. 3 has no state where v(q)=0, but it is important to trollable state representation S. let x, be any state in
realize that the condition, EA(q)>O for all q, is not Then IX1 is passive if and only if EA( xI)< + X.
limited to systems with no state of zero voltage, as we see Necessity follows directly from )efinition II. Suf-
below. ficiency follows from Definitions II and 13. and the fact

Example 5. Consider the nonlinear capacitor with con- that the transfer from x0 to any state x, requires ont,
stitutive relation t(q)-q(I -q2)e- ./2 shown in Fig. 4. finite energy. A formal proof is given in 121.

This capacitor is unbiased, in the sense that if q(0)=0
and i(t)- 0 for t > 0, then v(t)--0 for t > 0. A strai htfor- 3.3 Relaxed States and Strong Pavsiitv
ward calculation shows that E,(q)=(I +q2 )e - q /2, as Definition II is definitely weaker than the .oncept of
shown in the figure. Therefore, it is passive by Definition passivity that one would gain from experience with com-

11, and E,(q)>O for all q. This example is interesting mon circuit elements. In practice it is natural to associate
because if Iq(t)l remains sufficiently small for all t, then with a passive element some sort of "'rest state- or "'re-
v(t)=,3(q(t))fq(t); hence, this capacitor behaves locally laxed state" or state of "zero stored energy." While we do
at q-0 as though it were a I-F linear capacitor, yet it has not wish to found a general nonlinear theory on the
no state of zero available energy. existence of such states, it is reasonable to try to incorpo-

Examples 3 and 5 may seem counterintuitive since rate relaxed states into our approach.
experience with common linear elements suggests that a Definition 14. Given an n-port .Z with a state represen-
passive system ought to possess a state of "zero stored tation S, a point xe: is said to he a relaxed state if
energy," or more precisely, a state of zero available en- EA(x) - 0.
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In Fig. 2 the only relaxed state is v, = 0. while in Fig. I then for any T,0 and any input i(.)E q1, the energy
the state q= I is relaxed. The systems in Figs. 3 and 4 do extracted over the interval [0, T] is
not have any relaxed states. r T_ d( 2

(t)

Definition 15. An n-port .'k with a state representation f -v(t)i(t)dt=f -v( t)v dt= )- dt
S is strongv passive if 0 0 0 '2

(1) At is passive by Definition Il. and 12
(2) there exists a relaxed state x* E M. = 2 ( ° -v 2 (T)) 2 .v 0 .
The constitutive relation in Fig. I defines a strongly Therefore, the available energy as a function of v0 is vo/2.

passive3 I-port, for example. The constitutive relations in Writing it as a function of the initial state x3 we have
Figs. 3 and 4 define systems which are passive but not EA,(x 3)=(tanx 3)2/2, which is finite for each x 3 E- 3.
strongly passive. We will see in the next section, however, So in this example the classification of the n-port as
that passivity and strong passivity are equivalent concepts active or passive does not depend on which of the state
for linear, resistive, and memristive n-ports. Fig. 2 has a representations we choose. We now want to show that this
relaxed state but is neither passive nor strongly passive, result holds in general. The following definition is essen-
Theorem 2 shows that such a situation can never arise in tially that given in [171.
completely controllable systems. Definition 16. Given two state representations S, and

Theorem 2. Suppose an n-port 1,k has a completely con- S2, x, E 1, and x 2 E X 2 are said to be equivalent states if
trollable state representation S. If there exists a relaxed the class of admissible pairs {v(-),i(.)) of S t with initial
state x* Ez , then -,7 is passive (and hence strongly passive state x is identical to the class of admissible pairs of S2

as well). wthtx idntical t the A cdland of areqialen is of eTs isa imditloneuec f horm1 with initial state X2 . And S, and S2 are equivalent state
This is an immediate consequence of Theorem 1. representations if for each x, E X, there exists an equiva-

3.4 Equivalent State Representations lent x 2 EX2 and for each x2 e 2 there exists an equiva-

The definition of passivity in Section 3.1 is not based lent x pe M ,

directly on the physical properties of an n-port 9' ., but e equivalent state

rather on a certain function EA(.) which depends on the representations. Given x, I l , th e equiva

particular state representation we have chosen for St. The X2 =X ,+ I and x3 =tan-X. Given x2 a-
lent states are x1 =x 2 - and x3 =tanl(X2 - I). And

following example will help make this point clear. given X3 EM3 , the equivalent states are x,=tanX 3 and
Example 6. When viewed as a I-port, a I-F capacitor is X2 = I + tan X 3 i

completely characterized by the relation i=dv/dt or (1-2). Lemma 1. Let S, and S2 be two state representations
Let's consider the following three state representations for with x, Ell and x 2 EG 2. If x, and X2 are equivalent
such an element. (In all three cases we let i,=Lo(R+ states, then EA(xI)=EA(x 2 ).
R).) The proof is immediate from Definitions 10 and 16.

S, S2  S3  Theorem 3. Suppose an n-port 6X has two equivalent
state representations S, and S2. Then Definition II ap-

S=1 x = x3 = (cos 2 
X 3 )i plied to S, classifies 9L as passive ,=, it classifies I' as

passive when applied to S2 . And Definition 15 applied to
V=X1  v-x 2 - I v=tan X 3  S, classifies 9L as strongly passive t* it classifies It as
l = l 2 = R 23 =(-ir/2, ir/2). strongly passive when applied to S2.

The proof is immediate from Lemma 1.
Representation S2 is just a restatement of Example I, with
x 2 substituted for q. To see that S3 represents the same 3.5 Interconnections of Passive N-Ports
I-port as S, and S2, we calculate Definition 17. We say that an attribute of n-ports has

d V d 3  2 the property of closure if it is preserved under finite
dt= d 3 dt= c---x--J(cos2 x)(i)-i. interconnections, i.e.. if whenever t,* .... St,t have the
dt dX 3 dt Cos2s X3attribute and ." is obtained by interconnecting

Since S,. S, and S3 all represent a I-F capacitor, we 9t 1 ., ', with ideal lossless connecting wires, then .t

certainly hope that EA(xi). EA,(x 2 ), and EA,(x 3 ) will all must have the attribute as well.
be finite for each value of their arguments. Otherwise our Linearity and time-invariance, for example, possess
definition of passivity will be dependent on the particular closure. Observability and controllability do not. Does
state representation we select. For S, and S2 we know passivity have the closure property? In other words, will a
from Section 3.1 that EA,(x)-x2/2 and EA,(x 2)-(x2 - finite interconnection of passive n-ports always be pas-
1)/2. so EA,(x)< +oo for all x, Ell and Ex,(X2 )< +00 sie?
for all x 2 -: 2 . To calculate EA,(x), note that if v(0)-v 0 , The purpose of this subsection is to show that passivity

as defined in this paper does have the closure property, at
least under certain assumptions. We let 7. .. -. St,, have

3Our use of the term "strongly passive" should not be confused with state representations St, " S. with state spaces
similar terminology which has appeared in the systems literature (e.g.,[16]). i ,''5, We will consider only the simplest case, in

. . .. .EM
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which A)t has a state representation S which satisfies our 4.2 Generalized Capacitive/Inductive n-Ports
assumptions in Section 11 and has the state space 1-= A generalized capacitive/inductive n-port is an n-port

X, x " " " x× 1,, the Cartesian product of the individual with state and output equations of the form
state spaces. We will call such an interconnection admissi-
ble. XU

Lemma 2. Let G3X with state representation S be an y =g(x) (4-1)

admissible interconnection of ' " ,-.. k as defined where u and y form a hybrid pair. We call these gen-
above. Let E, : 2 --*R + be the available energy for 6X., eralized capacitive/inductive n-ports since they reduce to
I <j < k, and k2:=Z X ... X l.. --, + be the available n-port capacitors if u = i and y = v and to n-port inductors
energy for 111. Then if x-(x,., x) E 2 , we have EA(x) if u=v and y=i. (The relevant technical assumptions are
(EA,(x,) +"" + EA,(xk). that 2 = U= R", 1 = LL(R + - " ). and that g: 11--R "

The proof is immediate, since when Ais in initial state is continuous.)
xj. the total energy leaving its ports is bounded above by Theorem 6. Let .'X be a generalized capacitive/induc-
EA(xJ), and by Tellegen's theorem the power leaving the tive n-port with a state representation S as described
ports of GX at any instant is the sum of the powers leaving above. Then
the ports of L Xt,'"., St%. (1) .1 is passive <-*g= V4,, where 4,: -+R is a C' scalar

Theorem 4. Let A with state representation S be an function which is bounded from below.
admissible interconnection of '...... I X k .  (2) A)1 is strongly passive <-* the above conditions hold
(1) If 1-1 ,-. - A are passive, then S't is passive, and in addition 4,(.) attains its lower bound. i.e.. 3x*E- X
(2) If -1 '1 1 5k are strongly passive, then A is such that 4(x*) <(x), VxG!.

strongly passive. The proof is given in 121. The capacitor in Fig. I
Statement (I) follows immediately from Lemma 2. If satisfies both conditions (I) and (2) while the capacitors in

X '.-, I CJ, are strongly passive, then there exist states Figs. 3 and 4 satisfy only (1).
x7 EZYj with EA(x*)=O. Since x*=(x,.. x,) is in 1. It is easy to see that if -.Z is passive and I is the greatest
we have from Lemma 2 that EA(x*)=O, and statement (2) lower bound of i,("). then E.(x)=4(x) -. VxE-2. An
follows. immediate consequence of Theorem 6 is that if 7tc is

IV. NECESSARY AND SUFFICIENT CONDITIONS FOR passive and g() is C'. then the Jacobian matrix, [Dg](x)

PASSIVIrY OF SEVERAL CLASSES OF n-PORTS is symmetric at each point xC- . Linearizing (4-I) about
any state x, it follows that this symmetry condition is

For certain special classes of n-ports" it is possible to equivalent to reciprocity if u=i or if u=r. But if u-i and
find necessary and sufficient conditions for passivity which u#v, i.e.. if u contains both voltage and currents, then
can be verified directly by inspection of the state equa- symmetry of [Dg] is an entirely different condition from
tions. reciprocity (118]. but contrary to 161).

4.1 Resistive n-Ports Corollary to Theorem 6. A passive n-port inductor or

The resistive n-ports considered here are completely capacitor with a C' function g(-) is reciprocal.

characterized by the relation y = g(u). where u and y are a 4.3 Generalized n-Port Memristors
hybrid pair (Definition 3). Let U be any nonempty subset By a generalized n-port memristor we mean an n-port
of R ; S: U--*R" be any function, and Si be the class of all with state and output equations of the form
functions u(-): R+--*U such that t---<u(t),g(u(t))> is
locally L'. "=

It is unnatural to construct a state representation for a y= [R( x)]u (4-2)

resistive element, but in order to include such elements in where u and y form a hybrid pair and where R(x) is an
our theory we will given them representations of the form nxn real matrix which varies with x. A system of this sort
x-0. y-g(u), with . taken to be any nonempty subset of is, roughly speaking, a state-dependent linear resistor 1191.
Rp. The relevant technical requirements in this case are that

Theorem 5. Let A' be a resistive n-port with a state X = R", the entries of R( x) are continuous functions on
representation S as described above. Then the following and that 1,t = L 2,(R +-,R ).
three statements are equivalent: Theorem 7. A generalized n-port memristor with a state

(i) Ku. 5()> >0, VE U. representation as described above is passive 4-*R(x) is
(ii) EA(x)-O, VxEX. positive semidefinite at each point xC .
(iii) 9L is passive according to Definition II. The proof, which is straightforward. is in 121.
It follows immediately that passivity and strong passiv- Corollary to Theorem 7. A generalized n-port memristor

ity are equivalent for resistive n-ports. The proof, which is is passive if and only if it is strongly passive.
trivial, is given in [21.

4.4 Linear n-Ports
4Th ruhive, gnperalized capacitive/inductie, and generalized iem- We have shown in Example 2 and Fig. 2 that passivity

iuis a-ports consideed in this section are special cam of the algbrWc
apa uuted iby C l Il. is not exactly equivalent in general to the traditional

S .- .. .. . ... .. ." -- '
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positie real criterion. They are equivalent, however, if the Consider the first line in (4.6). Before taking the in-
n-port is completely controllable. The definition of a posi- fimum, the numerator is energy input per unit time and
tive real transfer function and its special interpretation in the denominator is the distance the state moves to the
the case of a rational function are well known [2], [7]. right per unit time; so the quotient is the input energy per

We consider the linear time-invariant finite dimensional unit distance Ax, in the limit as Ax-0 from above.
state representation Taking the infimum, we see that Q(x) is the minimum

.i=Ax+ Bu energy cost per unit displacement of x to the right, with
y=Cx+Du (4-3) the convention that (x)= +oo if it is impossible to drive

the state to the right from the point x. Similarly, h(x) iswhere u and y form a hybrid pair; U--R" and 2 --Am; A, the maximum energy we can extract per unit displacement

B, C, and D are real constant matrices of appropriate the ate eero te on t pe tisp e nt

dimension; and li is taken to be the class of all locally L2 of the state to the left from the point x, this time as Ax0

functions s: R It follows immediately that the from below: the convention here is that h(x)- - o if we

output y(-) is defined for all positive time and is itself cannot move to the left from x. In general, neither h()
2 nor h(.) will be continuous; however, h(-) is lower semi-locally L. The matrix condition for complete controllabil- continuous;and h(.) is upper semi

itycontinuous and h(-) is upper semicontinuous (see 2).
thesoe 8.kSupose 1 hasalinExample 7. Consider the following memristive I-portTheorem 8. Suppose -.1 has a linear, time-invariant, (19]:

finite-dimensional state representation S as in (4-3). If S is
completely controllable, then the following three condi- =

tions are equivalent: v=r(x)i (4-7)
(i) -.: is passive by Definition 11,
(ii) EA(O)=O; where X =U=R, l consist of all locally L' functions
(iii) The matrix transfer function mapping R + to R, r(.) is a continuous function which is

negative on the interval (0. 1) and zero elsewhere, and a is
His ) = C[ si-A ] - + D some real positive number.

is positive real. It is clear that h(x)= -oo for all x, since f(x, i) ,iJ"
Slight variations on this theorem are well known [7], [9] is never negative moreover. h(x)=O for all x outside of

and a complete elementary proof is given by Gannett and

Chua [20]. Example 2 in Fig. 2 shows why the assumption (0, 1), since p(x, i) = r(x)i 2 =0 for x4(0, I). When xE

of complete controllability is essential: for that 2-port (0, 1),/h(x) is the infimum over all i#:0 of i2r(x)/liI, i.e.,
Z(s) is positive real and EA()=0, but it is active nev- the infimum of r(x)jij(2 -): if a= 2. this is just r(x); if
ertheless. a#2, the infimum is - oo since r(x)<0.

For any state representation S and for any xE2:. let
4.5 First-Order Systems R(x) denote the set of states reachable from x (Definition

The systems considered in this subsection are those for 12). For first-order systems it will be useful to define, for
which the state space 2 is contained in the real line. As far each x 0 e 1 . R -(x 0 ) {x E R(xo): x < x0} and
as we know. the results given here are entirely new to the R (x 0 )=2xER(x 0 ): x>x0 ). In Example 7. for in-
literature. We consider systems with a state equation of stance, R (x 0 )=0 and R '(x,)=(x 0 . + c), for any x, E
the form 1.

r, =f(x. u). (4-4) Theorem 9. Let Xt be an n-port with a state representa-

The technical requirements are that I-cR'. U is a tion S as given in (4-4) and the paragraph following (4-4)
closed subset of R", and Xt is the set of all locally L, and suppose that for each xEG1, R+(x) and R-(x) are
functions mapping R + to U. In most examples, I will be open in R'. Then St is passive if and only if all three of
R' or an interval in R'. the following conditions are satisfied:

Definition 18. For each point xE T, let Ux+ be the set (i) p(x, u) > 0 at every point (x, u)E2 × U such that
of all input values u U such thatf(x, u)>0. Similarly, let f(x, U)=0;
U, be all values of u such that f(x, u)<0. (ii) h(x) </(x). VxEE1;

We will let R denote the set of extended real numbers, (iii) there exists a function W: -.-+R + such that, for
i.e.. R'={- ) uRU { +oo}. every x, E X.

Definition 19. We define h and h: --iR by 'h''d+W'-')0 VXER '' '4-8)
. sup p(x. u) ifU0- 0

h( )- u . f(x.U)' (4-5) 2

0-oo. if U,- -0 f (x)dx+W(x))0, Vx 2 ER+(xo). (4-9)

inf p(xu) if U + 90 The proof is given in [2]. Note that there is no need to
tx : .c u, J( x. u) (4-6) actually calculate W(xo). Its existence is just another way

+00'. if U'+ -0. of saying that the integrals in (4-8) and (4-9) remain
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bounded from below as their upper limits are allowed to In other words, an internal energy function is just a
vary in R-(x 0 ) and R+(xo), respectively. Since x, <x 0 , nonnegative5 function on 2 which increases along trajec-
the integral in (4-8) will be positive if the integrand is tories more slowly than the rate at which energy is de-
everywhere negative. No such problem occurs in (4-9). If livered to the ports (or decreases more rapidly than the
R-(xo) is empty then (4-8) is satisfied automatically for rate at which energy is extracted from the ports). We shall
that value of x0: (4-9) is similar, show shortly (Theorem 10) that under mild technical

The physical interpretation of the three conditions in assumptions an n-port .k is passive if and only if there
Theorem 9 is straightforward and quite interesting. The exists an internal energy function for .!Z. It is clear from
first condition says that it is impossible to extract power Definition 20 that if E (.) attains its lower bound at some
from St while x stands still, i.e., while 'X remains in point x* E 1, then the n-port S.l is strongly passive with
equilibrium. The second condition says that the maximum relaxed state x.*.
energy payoff per unit displacement of x to the left is less Definition 20 can be viewed as the integral version of
than or equal to the minimum energy cost per unit dis- the definition of an internal energy function, and it is the
placement to the right. This means that it is impossible to most general version. Under somewhat more restrictive
extract energy by driving the state around a closed path. assumptions the following lemma provides a differential
The integral in (4-8) represents the minimum energy con- version of Definition 20.
sumed while driving the system from x0 to x1, and the Lemma 3. Given an n-port .SZ with a state representa-
integral in (4-9) is the minimum energy consumed while tion S, and suppose that X CR ' is open. Suppose further
driving from x0 to x2. If the system is to be passive, then that q1, satisfies the following mild technical assumption:
it is clear that these quantities must be bounded from for each uo EU, there exists an input u(. ) El such that
below as x, and x 2 range over all states reachable from u(0)=u 0 and u(-) is continuous at t=O. Then a C' func-
x0 . If (i) and (ii) are both satisfied, then the least function tion q,: 2--+R' is an internal energy function for Sr(=
W(.) which satisfies (iii) is in fact the available energy KVq(x), fx,u)> (p(x~u), for all (xu)EX U.
EA(,).

Let's reconsider Example 7. Condition (i) is always (5-2)
satisfied because Iil" =O=i= O=*r(x)i2 

_0. Since x can The proof is given in [2].
only move to the right, h(x)= - oo everywhere and Note that there could exist an internal energy function
R-(xo)=O for all x0 ; hence, condition (ii) is trivially which satisfies (5-1) but not (5-2) by failing to be differen-
satisfied and (4-8) always holds by default. If a =2, then tiable. One might conjecture that a passive, completely
h(x)=r(x) and (4-9) is satisfied by choosing for IV(-) the controllable system in which f(.,.) and p(.,-) are C'
constant function would have at least one internal energy function which is

differentiable everywhere. But a counterexample given in
W o )-r(x)dx. [21] shows that this conjecture is false.

Lemma 4. Let 1). be a passive n-port with a state rep-
If a* 2, then h(x)- - oo for all x in (0, 1), (4-9) cannot be resentation S. Then the available energy EA(.) is an
satisfied, and the system is active, internal energy function for St.

The proof is given in (2].
V. INTERNAL ENERGY FUNCTIONs AND PAsSIVE The following theorem shows why internal energy func-

n-PORTS tions are of such importance in the study of passivity.

Many of the results in this section have been stated and Theorem 10. Let IN be an n-port with a state represen-
at least informally proved by Willems 19]. Our primary tation S, and suppose that 6?1 is translation invariant and
purpose here is to make these ideas more accessible to closed under concatenation. Under these conditions. Stk is
circuit theorists by translating them into a more ap- passive ** there exists an internal energy function E,(.)
propriate language and illustrating them with a simple defined on 1.
network example. Secondarily, we have stated them in a The proof is in [2].
form which makes rigorous proofs possible. Internal en- In view of Theorem 10, we could just as well take the
ergy functions will be the central tool in the theory of existence of an internal energy function as our definition
passive realizations in the next section. of passivity. This is in fact the approach that Willems [91

Definition 20. Given an n-port 9L with a state represen- has adopted.
tation S, we say that a function El: 1-+R * is an internal It is an important and somewhat surprising fact that the
energy function for %t if internal energy function for a passive n-port will often be

nonunique. The following example will make this clear.
E,(x(t2 ))-E(x(t,))e <fp(x(t),*(t))dt (5-1) Example 8. Consider the linear I-port shown in Fig. 5.

If we choose the voltage as input, its state and output

for all input-trajectory pairs {t(),x(.)) (Definition 8) equations are

and all 0 t, < t2. where p(-,.) is the power input func-
tion (Definition 2). 'We could equally well require only that E, be bounded from below.
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Fig. 5. The value of the shunt resistor is R-(IG) S. The I-port is of

course strongly passive provided G > 0. Fig. 7. Every voltage-controlled state representation has a realization
fthis formi which is passive, If I and C art both passive it is

called a passive realization.

S / G > 0. as a simple calculation will verify. Therefore, the
R electrical energy q 2/2 is always a valid internal energy

function.
Willems' theory for general linear system t9). based on

"' the algebraic Riccati equation, shows that the least value

of a satisfying (5-3) defines the available energy. In other

/,words. E,(q)=1(2G+ 1)-2 (;-G+ 1) [-q /2 for this sys-
I: /temn. This function is plotted in Fig. 6 for three different

values of G. When G -0. i.e.. when the shunt resistor is an
open circuit, we can extract energy from the capacitor
with arbitrarily small losses by letting i be very small and

'- ' ," , " -the discharge time very long. Therefore. E(q),q/2

0 -. when G - 0. and all the electrical energy is available at the
I por'ts.

..... G I P Willems' theorN further shows that the largest value of a
G :02 saisfyig (5-3) determines the "required energy" function
G 00

Fig. 6. Available energy and required energy for the I-port in Fig. . E,(q). which gives the minimum energy required to reach

plotted for several values of G. The solid line in the center represents the state q from the zero initial state. Further theorems.
the function q2/2. proofs. examples. and discussion concerning internal en-

ergy functions, their nonuniqueness, and the required

q v -(G + I)q energy function can be found in (21.

i=v-q VI. THE PASSIVE REAL/ATION OF n-PORTS

and we suppose that v11 = L'o (R + --*R) and G > 0. The result reported in this section is related to the work
10c of Anderson and Moylan 122). Our result is more general

It is immediately clear that the system is passive and the
electric energy stored in the capacitor. E,( q)-q 2/2, is an because we do not require that the state equations be
internal energy function. But there are other possible linear in the control, but for the same reason it is less

internal energy functions of the form ip(q)-a(q 2/2). constructive in nature.
Inequality (5-2) becomes in this case aqlv-(G+ l)q] Consider the n-port ,At in Fig. 7 formed by connecting
v(v-q), or v2 -[(a+ )qv+a(G+ )q 2 >as q v. E-.+ It the capacitive m-port ' to the resistive (n+ m)-port R. We
is simple to verify that this inequality always holds if and suppose that the constitutive relation of C is defined by a

only if (a+ 1)2 -4 ( G+ l)a<0; hence, a(q2/2) is an in- C' scalar function a: R"'--R, i.e., e=V(q). And the
ternal energy function if and only if constitutive relation of ':R is given by j=fte, v) and i=

j(e,v), where j: R'" XR "--R'" and j: R" X R"--4R" are
(2G+I)-2G(6+l) <a<(2G+l)+2G(G+I) . continuous. Substituting the equation j -j and the con-

(5-3) stitutive relation of C into the above, we arrive at the state
and output equations for o)1:

There are two features of this result worth noticing. The

first is that there is a range of possible values of a, and q-f(Vq(q), v)
hence of internal energy functions, for each G>0. The
second is that a-I lies in this interval for any value of i-v((q),v). (6-1)

~i

___ ... ........______ ......._______ "__________________________ " z-.."
- .,, ".±". - -C,,,, . ~ :J.
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Technical Assumptions Corollarv to Theorem 11. Suppose the state representa-
We assume throughout the remainder of this subsection tion S. given in (6-3) along with the technical assumptions,

that U=R", E=R", and that "l satisfies the mild techni- is passive and that there exists a C' internal energy
cal assumption given in Lemma 3. Also the phrase " A is function 4,: R'-R + such that V4,: R'"-R'" is I-I. Then
passive" will mean that ,' is passive when its inputs are S has a passive realization as in Fig. 7.
restricted to V,[R'] x R" c R- x Rn. In this case we can simply construct .. • and j(. ) as

Lemma 5. For some value of mEER the function follows:
S~b,,- 4(.)-m is an internal energy function (Defini- f(V4(x),v)-=f( V 'o(V4(x)),r]

tion 20) for the n-port "* in Fig. 7 with the state represen-
tation S defined above 4-* 'R and C are both passive. i(V(x), 0 =g[ (V4,) -'- (V4(x)). r].

To see this. we recall from Definition 20 and Lemma 3 For simplicity, we have discussed only voltage-
that ,,(.) is an internal energy function for this system if controlled state representations in this section. Analogous
and only if P,,,(.) is nonnegative and results hold for any state representation in which u and y

form a hybrid pair.
,V, (V)(q). ,) < 'r. (V4, (q), v)> (6-2) Theorem II and its corollary show that the recovery of

for all (q. v)E R'" x R". Now 4,,.) is nonnegative for a C' internal energy function from a given state represen-
some value of m if and only if 4,(.) is bounded from tation S is an important first step toward obtaining a
below, a condition which is equivalent to passivity of C by passive realization of S. This problem is solved for certain
Theorem 6. Since Vp,,,, = V,--=e, (6-2) can be written as classes of state representations in [8].

<v, k(e. r) " + <e. -Ae, ) > = <v, i > - <e. j > 0 VIII. CONCLUDING REMARKS

which is equivalent to passivity of "R (Theorem 5) once the 7.1 Three Different Interpretations of Passiviy
reference direction for j is taken into account. There are three different but logically equivalent ways

Definition 21. The n-port 1.7 in Fig. 7 is a realization of of interpreting passivity, as defined in this paper.
the state representation The first might be called "the thermodynamic point of

xi=f(x. v) i=g(x, v) (6-3) view," and is related to the various "availability" concepts
of thermodynamics [23, ch. 17]. Here we consider anwith the technical assumptions listed above if j. and 'P n-port as a possible energy source and concern ourselves

are chosen so that with how much energy we can hope to extract from it.

fix, v)=(V4(x), v) The maximum amount will generally depend on the initial
state and is denoted by EA(xo). We have written thisg(x. v)=i(V4(x), v), V(x. v)ER"' X R". (6-4) paper from the thermodynamic point of view, as Defini-

It is a passitv realization if 611 and CS are both passive. tions 10 and I I clearly reflect. This approach seems to us
We view the multiports 'R and C as given quantities-we to present the meaning of passivity in the clearest possible

are not concerned with the difficult and unsolved problem light and to be the appropriate one for network synthesis.
of synthesizing these nonlinear multiports. It is clear that but it does not make the potential links between passivity
any voltage-controlled state representation S has a realiza- and stability especially obvious.
tion in which C( is passive and linear: if each port of C is a From the second perspective, which we might call the
I-F capacitor, then V4,(q)=q and we obtain a realization "input-output viewpoint, applied to n-ports with state
by choosingj(-. )=f-, .) and j(., .)=g(., .); in general, equations," we look on an n-port as a family of operators
however, the resistive (m+n)-port 6R will not be passive H,. one operator for each initial state xE . These operate
for such a realization, on an input waveform u(.) to produce an output wave-

The following theorem is an immediate consequence of form .- ), i.e. H,: u(-*y(.) iff u(.) and A.) are an
the preceding lemma and definition, input-output pair (Definition 9) with initial state x. For

Theorem l/. Suppose the state representation S, given this discussion we assume that u(.) and y(.) are a hybrid
in (6-3) along with the technical assumptions, is passive pair and that the domain and image of H, are in
and further that there exists a C' internal energy function L 2,(R+--*R'), since we wish to introduce the family of
4,: R' --.R + such that (6-4) holds. Then the n-port in Fig. inner products
7 is a passive realization of S. T

Since C is clearly passive under these conditions, the Kw("), Y()r \foM(t), y(t)) dt.
point of Theorem I I is that 6A is passive as well, precisely
because 4,(.) is an internal energy function. The problem We can then think of H, as passive if ,u(.), H ~u(.))7 is
with Theorem I I is of course that we do not generally bounded below as u(.) varies over 1 l and T varies over
know how to findf(.,-) and j(., -) satisfying (6-4); we do R *, and we say that the n-port is passive if H, is passive
not even know in general when they exist. The following for each xE Z.
corollary gives us one special case in which these prob- We should mention that the usual practice in works on
lems do not arise. feedback systems or input-output theory is to model a
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physical system by a single operator H and to ignore its I-------------- ....
dependence on the initial state. This practice is reasonable V , R

enough in the linear case where the inte,,ded initial state is .
clearly the origin. But in the nonlinear case it is incom- I

plete, especially for those systems that have a multiplicityQ = 9(VR

of locally stable equilibrium points when the input is zero.
Furthermore, this omission has the effect of making the ))e(t)F v

gap between the input-output and state space viewpoints
seem even wider than it actually is.

The thermodynamic approach is logically equivalent to -±

the input-output viewpoint described above. Input- - -

output theory is extremely important as the setting for L -----------

many stability theorems from control theory which are Fig. 8. Example 9 gives various choices off and g for which this I-port

based on functional analysis [141. It is important to note, is passive but not stable.

however, that such theorems always require conditions
which are stronger than or distinct from passivity alone, ity" of H1 in the sense of [241. But [241 incorrectly states
e.g., incremental passivity, that strong passivity (Definition 15) is equivalent to "pas-

The third way of looking at passivity might be called sivity" of H, ' in the sense of [24]. The correct statement
"the internal energy point of view," From this perspective would be that an n-port is strongly passive (Definition 15)
we would say that an n-port is passive if there exists a if H, is "weakly passive" and H. "passive" for some
nonnegative function on the state space which decreases nonempty 2 c l, both in the sense of [24].
along trajectories at least as rapidly as the rate at which
energy leaves the ports. We have shown in Theorem 10 7.2 Passive Systems are Not Always Stable

that under mild technical assumptions this point of view is There are so many well-established connections be-
equivalent to the first two. Many stability theorems in tween passivity and stability that it is tempting to suppose
circuit theory take this view of passivity because the that every passive system is stable in some sense. But
internal energy function can often serve as a Lyapunov consider the following example.
function; it is important to note, however, that even a Example 9. The voltage-controlled state equations for
smooth internal energy function need not be a genuine the I-port in Fig. 8 are
Lyapunov function because the concept of passivity alone dq
imposes no requirements on its shape. The internal energy - =g(e -fq))
function in Fig. 3(b) is an example which shows that
additional requirements are necessary, since it does not ]=g(e-f(q)). (7-1)
qualify as a Lyapunov function. Case 1: Suppose the resistor is i 02 and the capacitor is

Finally, we would like to mention a recent paper [241 the exponential capacitor of Fig. 3(a), i.e., g(vR)=vR, and
which also addresses the relationship between various f(q)-exp(q). This system is passive but not strongly
input-output and state space concepts of passivity. In passive. The zero-input trajectories are given by q(i)=
terms of the notation and assumptions adopted earlier in -ln[exp(-q(0))+t] and hence unbounded for any initial
this subsection, [241 defines passivity as follows. For any state q(0).
subset 12 cX, let H be the family of operators { HIx G S2). Case 11: Suppose the resistor is 1 9 and the capacitor is
Then H is "passive" according to [24] if Ku(.), characterized by f(q)=q(2-q 2)exp(-q 2/2). One can
Hm()>>) 0 for all TER+. u()E°1. and xEf2. And the easily verify that the available energy for the capacitor
(mathematical model of the) n-port is passive according to alone is EA(q)=q2 exp(-q 2/2). Therefore, the origin is a
[24] if there exists a nonempty Q c I such that H. is relaxed state (Definition 14) and hence the I-port in Fig. 8
passive. This notion of passivity is quite precise about the is strongly passive (Definition 15) in this case. With zero
role played by the initial state, but we feel it is not fully input the origin is (locally) asymptotically stable. But one
adequate for n-ports for reasons which the following ex- can easily verify that if Jq(0) > V2 and the input is
ample makes clear. Let Ho be the zero state input-output always zero, then Jq(t)--,oo as t--,oo.
map for Example 2. i.e. H0 : {i1(.),i 2 (.)}I-s{v 1 (.),v 2(.) }  Using the notation of Section 7.1, this example is de-
when vc(O) 0. Then H0 is passive and, therefore, the scribed by an operator H0 which is passive in the sense of
n-port in Fig. 2 is passive according to [24) even when [24], and hence the I-port of Case I! is passive in the sense
C<0, i.e., under conditions when v =0 is an unstable of [24). This second case thus shows that neither passivity
state, the system is an infinite energy source for all vc 0, in the sense of [24] nor strong passivity in the sense of
and Jv2(t)-soo as t---oo for all nonzero initial states and Definition 15 is sufficient to guarantee that trajectories
all inputs. For this reason we feel that an n-port should be remain bounded for zero input. But neither case above is
classified as passive only on the basis of its behavior over especially disturbing since the directly observable port
all of X. variables v and i decay to zero, although q(.) is un-

Passivity (Definition 11) is equivalent to "weak passiv- bounded.
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